Batch Mode Active Learning for Node Classification in Assortative and Disassortative Networks
نویسندگان
چکیده
منابع مشابه
Active Learning for Node Classification in Assortative and Disassortative Networks
In many real-world networks, nodes have class labels or variables that affect the network’s topology. If the topology of the network is known but the labels of the nodes are hidden, we would like to select a small subset of nodes such that, if we knew their labels, we could accurately predict the labels of all the other nodes. We develop an active learning algorithm for this problem which uses ...
متن کاملMutual attraction model for both assortative and disassortative weighted networks.
For most complex networks, the connection between a pair of nodes is the result of their mutual affinity and attachment. In this letter, we will propose a mutual attraction model to characterize weighted evolving networks. By introducing the initial attractiveness A and the general mechanism of mutual attraction (controlled by parameter m), our model can naturally reproduce scale-free distribut...
متن کاملDiscriminative Batch Mode Active Learning
Active learning sequentially selects unlabeled instances to label with the goal of reducing the effort needed to learn a good classifier. Most previous studies in active learning have focused on selecting one unlabeled instance to label at one time while retraining in each iteration. Recently a few batch mode active learning approaches have been proposed that select a set of most informative un...
متن کاملJoint Transfer and Batch-mode Active Learning
Active learning and transfer learning are two different methodologies that address the common problem of insufficient labels. Transfer learning addresses this problem by using the knowledge gained from a related and already labeled data source, whereas active learning focuses on selecting a small set of informative samples for manual annotation. Recently, there has been much interest in develop...
متن کاملRNN Based Batch Mode Active Learning Framework
Active Learning has been applied in many real world classification tasks to reduce the amount of labeled data required for training a classifier. However most of the existing active learning strategies select only a single sample for labeling by the oracle in every iteration. This results in retraining the classifier after each sample is added which is quite computationally expensive. Also many...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2017.2779810